On the spectral radii of quasi-tree graphs and quasi-unicyclic graphs with k pendent vertices
نویسندگان
چکیده
A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex u0 ∈ V (G) such that G−u0 is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph if there exists a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph. Set T (n, k) := {G : G is a n-vertex quasi-tree graph with k pendant vertices}, and T (n, d0, k) := {G : G ∈ T (n, k) and there is a vertex u0 ∈ V (G) such that G−u0 is a tree and dG(u0) = d0}. Similarly, set U (n, k) := {G : G is a n-vertex quasi-unicyclic graph with k pendant vertices}, and U (n, d0, k) := {G : G ∈ U (n, k) and there is a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph and dG(u0) = d0}. In this paper, the maximal spectral radii of all graphs in the sets T (n, k), T (n, d0, k), U (n, k), and U (n, d0, k), are determined. The corresponding extremal graphs are also characterized.
منابع مشابه
Ela on the Spectral Radii of Quasi-tree Graphs and Quasi-unicyclic Graphs with K Pendant Vertices∗
A connected graph G = (V, E) is called a quasi-tree graph if there exists a vertex u0 ∈ V (G) such that G−u0 is a tree. A connected graph G = (V, E) is called a quasi-unicyclic graph if there exists a vertex u0 ∈ V (G) such that G− u0 is a unicyclic graph. Set T (n, k) := {G : G is a n-vertex quasi-tree graph with k pendant vertices}, and T (n, d0, k) := {G : G ∈ T (n, k) and there is a vertex ...
متن کاملSome results on the ordering of the Laplacian spectral radii of unicyclic graphs
A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend th...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملOn Merrifield-Simmons index of unicyclic graphs with given girth and prescribed pendent vertices
For a graph G, the Merrifield-Simmons index i(G) is defined as the total number of independent sets of the graph G. Let G(n, l, k) be the class of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. In this paper, we characterize the unique unicyclic graph possessing prescribed girth and pendent vertices with the maximal Merrifield-Simmons index among all graphs ...
متن کامل